Tagger Documentation
  • About Tagger
    • 🛸 Our Vision
    • 🔌 What We Do
  • Challenges in the Current Data Economy
    • 🌏 Chaotic Data Authentication
    • 📂 Difficulty in Data Acquisition
    • 📌 Quality of Labeled Data
    • 🪝 Data Silos
    • 🛡️ Privacy and Ethical Issues
    • 🧳 The Need for Continuous Maintenance
  • Our Solutions
    • 📃 Data Authentication Protocol
    • 🌲 A Full-Stack Decentralized AI Data Solutions Platform
      • Web 3 Crowdsourcing
      • Simple Onboarding, Instant Global Payments
      • DePIN-Based Data Collection and Sharing
      • AI Copilot Labeling Tool
      • Permissionless AI Marketplace
      • Data Developer Community
      • Human-In-The-Loop
  • Tagger Features
    • Data Authentication Protocol
    • Decentralized AI Data Collection
    • Decentralized AI Data Labeling
    • Data Evaluation, Cleaning, and Processing
    • Data Trading and Management
    • HITL Telegram Mini App
  • Hardware
    • ⌚ Health Monitoring Wristband
  • Tokenomics
    • ☑️ $TAG
    • 🪙 Token Distribution
    • 💡 Task Reward Calculation
      • AI Copilot Labeling
      • Manual Labeling
      • Data Review and Staking
      • 👥 Daily Task Bonus
  • Smart Contract and Audit
    • 📄 Audits
    • 🖼️ NFT Smart Contract
    • 🪙 Token Smart Contract
  • Roadmap
  • Team
  • Contact Us
Powered by GitBook
On this page
  1. Our Solutions
  2. 🌲 A Full-Stack Decentralized AI Data Solutions Platform

AI Copilot Labeling Tool

We have developed a revolutionary AI-copilot annotation tool, leveraging a collection of expert models, to address the challenges of professional data annotation. Powered by deep learning technology, this tool functions as a co-pilot, assisting workers in the annotation process by enhancing efficiency and reducing the need for manual intervention. It also automatically verifies the quality of annotations, ensuring high standards of accuracy.

This approach enables participants, even those without industry-specific expertise, to produce high-quality annotations. Moreover, the tool is dynamic, continuously learning and optimizing its processes to maintain and improve the accuracy and consistency of annotations over time.

PreviousDePIN-Based Data Collection and SharingNextPermissionless AI Marketplace

Last updated 8 months ago